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Abstract— We present two efficient histogram algorithms de-
signed for NVIDIA’s compute unified device architecture (CUDA)
compatible graphics processor units (GPUs). Our algorithm can
be used for parallel computation of histograms on large data-sets
and for thousands of bins. Traditionally histogram computation
has been difficult and inefficient on the GPU. This often means
that GPU-based implementation of the algorithms that require
histogram calculation as part of their computation, require to
transfer data between the GPU and the host memory, which
can be a significant bottleneck. Our algorithms remove the need
for such costly data transfers by allowing efficient histogram
calculation on the GPU. We show that the speed of histogram
calculations can be improved by up to 30 times compared to a
CPU-based implementation.

Index Terms— Histogram, Parallel processing, Compute uni-
fied device architecture (CUDA), Graphics processor unit (GPU)

I. INTRODUCTION

The histogram is a non-parametric density estimator which
provides a consistent estimate of the probability density func-
tion (pfd) of the data being analyzed [1], [2]. The histogram is
a fundamental statistical tool for data analysis which is used as
an integral part of many scientific computational algorithms.

Recent advances in graphics processor units (GPUs), most
notably the introduction of the compute unified device archi-
tecture (CUDA) by NVIDIA [3], allows implementation of
non-graphical and general purpose algorithms on the GPU.
GPUs, like NVIDIA 8800 GTX, are massively multi-threaded
single instruction multiple data (SIMD) devices and are opti-
mized for floating point calculations. Due to its architecture,
the GPU is a natural candidate for implementation of many
scientific applications, which require high-precision and effi-
cient processing of large amounts of data.

A. Background and Motivation

Unfortunately, the higher processing power of the GPU
compared to the standard central processor unit (CPU), comes
at the cost of reduced data caching and flow control logic as
more transistors have to be devoted to data processing. This
imposes certain limitations in terms of how an application
may access memory and implement flow control. As a result,

implementation of certain algorithms (even trivial ones) on the
GPU may be difficult or may not be computationally justified.

Histogram has been traditionally difficult to compute effi-
ciently on the GPU [4]. Lack of an efficient histogram method
on the GPU, often requires the programmer to move the data
back from the device (GPU) memory to the host (CPU), result-
ing in costly data transfers and reduced efficiency. A simple
histogram computation can indeed become the bottleneck of
an otherwise efficient application.

Currently, there is only one efficient histogram method
available for CUDA compatible devices [4]. The histogram
is limited to 64 bins, which is too small for many real-life
applications. For example, 2D histogram calculations used in
estimating the joint pdf of pixel intensities, commonly used
in mutual information ([5])-based image registration methods
(e.g. [6], [7], [8], [9], [10]), typically require in the order of
10, 000 bins.

B. Method and Contribution

We present two efficient histogram methods for CUDA
compatible devices which can be used for any number of
bins. The histogram methods are designed for NVIDIA 8-
series GPUs of ‘compute capability’ 1.01. The GPU does
not support atomic updates of the device’s global memory or
shared memory. It also lacks mutual exclusion (mutex) and
critical section thread synchronization primitives which are
required for safe access to shared objects by multiple threads.
The only synchronization facility offered by the GPU is the
thread join which only works among the threads of the same
thread block.

To overcome lack of synchronization primitives, we inves-
tigate two strategies for histogram implementation. The first
method is based on simulating a mutex by tagging the memory
location and continuing to update the memory until the data
is successfully written and the tag is preserved. The second
method maintains a histogram matrix of B × N size, where
B is the number of bins and N is the number of threads.
This provides a collision free structure for memory updates
by each thread. A parallel reduction is ultimately performed
on the matrix to combine data counters along the rows and
produce the final histogram. Various techniques are used to

1Unless otherwise noted, use of the term GPU in the remainder of this
paper refers to this class of devices.



2

minimize access to the GPU’s global memory and optimize
the kernel code for the best performance.

II. CONCEPTS

A. An Overview of CUDA

We provide a quick overview of the terminology, main
features, and limitations of CUDA. More information can be
found in [3]. A reader who is familiar with CUDA may skip
this section.

CUDA can be used to offload data-parallel and compute-
intensive tasks to the GPU. The computation is distributed in
a grid of thread blocks. All blocks contain the same number
of threads that execute a program on the device, known as the
kernel. Each block is identified by a two-dimensional block
ID and each thread within a block can be identified by an
up to three-dimensional ID for easy indexing of the data
being processed. The block and grid dimensions, which are
collectively known as the execution configuration, can be set
at run-time and are typically based on the size and dimensions
of the data to be processed.

It is useful to think of a grid as a logical representation of the
GPU itself, a block as a logical representation of a multi-core
processor of the GPU and a thread as a logical representation
of a processor core in a multi-processor. Blocks are time-sliced
onto multi-processors. Each block is always executed by the
same multi-processor. Threads within a block are grouped into
warps. At any one time a multi-processor executes a single
warp. All threads of a warp execute the same instruction but
operate on different data.

While the threads within a block can co-operate through a
cached but small shared memory (16 KB), a major limitation is
the lack of a similar mechanism for safe co-operation between
the blocks. This makes implementation of certain programs
such as a histogram difficult and rather inefficient.

The device’s DRAM, the global memory, is un-cached.
Access to global memory has a high latency (in the order of
400-600 clock cycles), which makes reading from and writing
to the global memory particulary expensive. However, the
latency can be hidden by carefully designing the kernel and
the execution configuration. One typically needs a high density
of arithmetic instructions per memory access and an execution
configuration that allows for hundreds of blocks and several
hundred threads per block. This allows the GPU to perform
arithmetic operations while certain threads are waiting for the
global memory to be accessed. The performance of global
memory accesses can be severely reduced unless access to
adjacent memory locations is coalesced2 for the threads of a
warp (subject to certain alignment requirements).

The data is transferred between the host and the device via
the direct memory access (DMA), however, transfers within
the device memory are much faster. To give reader an idea,
device to device transfers on 8800 GTX are around 70 Gb/s3,

2Memory accesses are coalesced if for each thread i within the half-warp the
memory location being accessed is ‘baseAddress[i]’, where ‘baseAddress’
complies with the alignment requirements.

3Gigabits per second

whereas, host to device transfers can be around 2−3 Gb/s.
As a general rule, host to device memory transfers should
be minimized where possible. One should also batch several
smaller data transfers into a single transfer.

Shared memory is divided into a number of banks that
can be read simultaneously. The efficiency of a kernel can be
significantly improved by taking advantage of parallel access
to shared memory and by avoiding bank conflicts.

A typical CUDA implementation consists of the following
stages:

1) Allocate data on the device.
2) Transfer data from the host to the device.
3) Initialize device memory if required.
4) Determine the execution configuration.
5) Execute kernel(s). The result is stored in the device

memory.
6) Transfer data from the device to the host.
The efficiency of iterative or multi-phase algorithms can

be improved if all the computation can be performed in the
GPU, so that step 5 can be run several times without the need
to transfer the data between the device and the host.

B. Problem Statement

Histogram calculation is straightforward on a sequential
processor as shown in Listing 1.� �

1 f o r ( i = 0 ; i < d a t a l e n ; i ++)
2 {
3 / / ’ da ta [ ] ’ i s n o r m a l i z e d be tween 0 . 0 and 1 . 0 .
4 b i n = d a t a [ i ] ∗ ( b i n s − 1 ) ;
5 / / ’ h i s t o g r a m [ ] ’ i s a l r e a d y i n i t i a l i z e d t o z e r o .
6 h i s t o g r a m [ b i n ] + + ;
7 }� �

Listing 1. A simple histogram code snippet for a sequential processor.

Thread(1) Thread(2) 

data[1]

Thread(i)

data[2] ... data[i] data[N]...

data[N+1] data[N+2] ... data[N+i] data[N+N]...

data[MN+1] data[MN+2] ... data[MN+i] data[MN+N]...

Thread(N)

histogram[1] histogram[2] histogram[B]...

... ...

... ...... ...

Fig. 1. Parallel calculation of a histogram with B bins distributed to N

threads. Histogram updates conflict and require synchronization of the threads
or atomic updates to the histogram memory.

Parallelizing a histogram with B bins over N threads is
schematically shown in Fig. 1. The input data is distributed
among the threads. Updates to histogram memory is data
dependent as such, many threads may attempt to update the
same location of the memory resulting in read/write conflicts.
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Since the GPU lacks native mutex synchronization and atomic
updates to its memory, we propose the following two methods
to avoid the concurrent update problem.

III. METHOD

A. Method 1: Simulating Atomic Updates in Software

The GPU executes the same instruction for all the threads
of a warp. This allows simulating an atomic update by tagging
the data that is being written to with the thread ID within the
warp and repeatedly writing to the location until the tagged
value can be read without change as shown in Listing 2.� �

1 / / ’ b i n ’ i s d e f i n e d as ’ v o l a t i l e ’ t o p r e v e n t t h e comp−
2 / / i l e r from o p t i m i z i n g away t h e compar i son i n l i n e 1 3 .
3 v o l a t i l e unsigned i n t b i n ;
4 unsigned i n t t a g g e d ;
5 b i n = ( unsigned i n t ) ( d a t a [ i ] ∗ ( b i n s − 1 ) ) ;
6 do
7 {
8 unsigned i n t v a l = h i s t o g r a m [ b i n ] & 0x07FFFFFF ;
9 / / The lower 5 b i t s o f t h e t h r e a d i d ( t i d ) are

10 / / used t o t a g t h e memory l o c a t i o n .
11 t a g g e d = ( t i d << 27) | ( v a l + 1 ) ;
12 h i s t o g r a m [ b i n ] = t a g g e d ;
13 } whi le ( h i s t o g r a m [ b i n ] != t a g g e d ) ;� �
Listing 2. Simulating atomic updates to shared memory for threads that
belong to the same warp.

For this method to work one needs to ensure that
‘histogram [] ’ array can only be updated by one warp and the
frequency of samples does not exceed 32 − log2 w, where w
is the warp size. For 8800 GTX, the warp size is 32 and the
frequency of samples cannot exceed 227.

At each iteration, at least one of the threads within the warp
is guaranteed to succeed [3], so the worst-case scenario is that
the loop has to be executed w times. This happens when all
the threads happen to be writing to the same bin.

‘histogram [] ’ has to be allocated on the GPU’s shared
memory for this method to be efficient. However, given the
4 K double word (32-bit) limit for the shared memory, the
maximum number of bins that can be supported is 40964. We
caution against allocating ‘histogram [] ’ in the global memory
to overcome this limit, as repeated updates to the high latency
global memory will significantly reduce the execution speed.

We also note that using a single warp under-utilizes the GPU
resources. For optimal performance the GPU needs around 4-8
warps. As such, we need to allocate a separate histogram array
for each warp. The sub-histogram arrays are then combined
to produce the final result. Obviously, increasing the number
of warps will further limit the number of bins that can be
processed per execution of the algorithm.

To allow calculation of an arbitrary number of bins, we sub-
divide the bin ranges into a number of sub-ranges that fit in the
shared memory. For a given execution configuration we run
the algorithm as many times as required to cover the entire bin
range. At each iteration the kernel will only process those data
elements which fall in the specified bin range. For example,

4The actual number is slightly lower, since CUDA uses shared memory to
pass arguments and execution information to the kernel.
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Fig. 2. The performance of the method is higher with more warps but drops
more quickly with the number of bins. Lower number of warps perform better
for bigger bins.

with 4 warps and a limit of 1024 bins per execution, a 10, 000
bin histogram requires 10 iterations of the algorithm.

Fig. 2 shows histogram throughput in gigabytes per second
for 2, 8 and 16 warps. Histogram bins are varied from 1 to
10, 000. The input data is random with a uniform distribution.
Higher number of warps result in improved performance for
smaller bins but as the number of bins increases, the number
of warps has to be reduced in order to achieve the highest
throughput. As a result, we choose the optimum number of
warps wopt depending on the number of bins and such that

wopt = argmax
w

wB, wB ≤ smax, 3 ≤ w ≤ wmax, (1)

where w is the number of warps, B is the number of bins,
smax is the maximum number of double words that can be
allocated in the shared memory, and wmax is the maximum
number of warps supported by the hardware. We also note that
the performance of the method with respect to the number of
bins is almost piece-wise constant with the exception of small
bins where the performance is lower due to increased chance
of bin update collisions. The jumps in Fig. 2 correspond with
the increasing number of iterations required for calculating the
entire bin range.

The disadvantage of this method is that the throughput
is dependent on the distribution of the data. In Fig. 3, we
have shown the throughput of the method for a random input
with a uniform distribution, a random input with a normal
distribution, and for a degenerate distribution (i.e. all input
elements are set to the same value). The random input with
uniform distribution is close to the best case scenario, as for
large inputs the histogram is going to be uniform and the
histogram update collisions are close to minimal. A degenerate
distribution results in maximum histogram update collisions,
as all the threads try to update the same histogram bin and as
such represents the worst case scenario. The performance for
a real application is somewhere in between these lower and
upper bounds and we have represented this with a random
input with a normal distribution with mean 0 and standard
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Method 1 − Performance for Different Input Distributions
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Fig. 3. The performance of method 1 is dependent on the distribution of the
input data. Data with a uniform distribution performs (almost) best. The worst
performance is observed for a degenerate distribution. The performance for
practical applications is somewhere between these upper and lower bounds.
Depending on the number of bins, a performance improvement of between
3-30 times is observed compared to the CPU implementation.

deviation 1. For comparison, we have shown the throughput
of histogram calculation on a high-end CPU (refer to Appendix
I for specifications). The performance of the histogram on the
CPU is almost constant w.r.t. the number of bins and is not
affected by the distribution of the input data. Fig. 3 shows that
the GPU implementation has a clear advantage, especially for
smaller bins.

B. Method 2: Collision-Free Updates

As discussed, performance of the histogram calculation
using the first method depends on the distribution of the input
data. This may not be ideal for certain applications. In this
section, we present and analyze an alternative method whose
performance is not affected by the distribution of data. To this
end, we allocate a histogram array per thread in the global
memory. Then a partial histogram is calculated per thread
and finally the partial histograms are reduced into a single
histogram.

The benefit is that, given the size of the global memory,
for any practical number of bins the algorithm only requires
a single iteration to complete. In addition, there will be no
concurrent updates of the same memory location by multiple
threads and as such no update synchronization is required,
which in turn means that the performance of the method is
not data dependent.

However, there are two drawbacks to this method; firstly,
a much larger memory for partial histograms needs to be
allocated and initialized to zero at the beginning; secondly,
histogram updates need to be done on the global memory,
this entails non-coalesced read/writes per input data and is
inefficient.

The standard memory initialization method that can be
called from the host, ‘cudaMemset’ proved to be inefficient.
We implemented a method for initializing floating point arrays
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Fig. 4. The performance of method 2 is above the first method’s worst case
and the CPU-based histogram implementation. The maximum throughput is
achieved for smaller bins with an improvement of up to 30 times compared
to the CPU implementation.

in the kernel with a throughput of around 35 Gb/s, which
addressed the first problem.

To address the second problem, and avoid excessive non-
coalesced updates of the global memory, we pack multiple
bins in a double word in the shared memory and only update
the corresponding bin in the global memory when the packed
bin overflows. This reduces the updates to the global memory
by a factor of 2b, where b is the number of bits available
for storage of a bin in the shared memory. b depends on the
number of threads per block and the number of bins and is
calculated as

b =
smax × 32
B ×Nb

, (2)

where smax is the maximum number of double words that can
be allocated in the shared memory, B is the number of bins
and Nb is the number of threads per block.

There is a trade-off between the number of threads and the
number of bits per bin. Increasing the number of threads, de-
creases b, resulting in more global memory updates, while re-
ducing the number of threads can under-utilize GPU resources
and affect the performance. We optimized these parameters
for the best performance, the result is shown in Fig. 4. As
can be seen the second method performs consistently better
than the first method’s worst case. The performance of the
second method for smaller bins is comparable with the first
method’s best case. However, this method under-performs the
first method’s best case for the mid and high bin ranges.

IV. DISCUSSION

The histogram implementations, presented in this paper,
highlight some of the challenges, trade-offs and rewards in
rethinking existing algorithms for a massively multi-threaded
architecture, such as CUDA. The performance of the histogram
calculation on a GPU can be up to 30 times more, compared to
a CPU implementation. While the performance improvement
diminishes with increasing number of bins, the improvement is
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significant for a wide range of bins and consequently for many
practical applications. Even when the performance of CPU and
GPU implementations are comparable, the fact that the GPU
implementation removes the need for data transfer between the
device and the host, will still benefit applications that require
histogram calculation as part of their implementation.

We recommend using the first method, where the distri-
bution of the data is known to be well behaved such as
a uniform or gaussian distribution (with not a too small
standard deviation). However, when the distribution is close
to a degenerate distribution or very sparse the second method
will be more efficient.

In practice, one can choose the appropriate method by
experimentation. The source code for the presented algorithms,
as well as 2D histogram implementations, can be found online
at http://cecs.anu.edu.au/˜ramtin/cuda/.

In our opinion, CUDA is a promising technology built upon
a solid hardware and software platform that can greatly benefit
scientific and applied computing applications. The two major
limitations of the current hardware are the small size of the
shared memory and the lack of basic synchronization methods.
While we recognize that addressing these limitations is no
trivial task, we expect that future generations of the platform to
provide further improvements and more flexibility over time.
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APPENDIX I
HARDWARE CONFIGURATION

We used the following host and device configurations in our
experiments.

TABLE I

HOST SPECIFICATION

Processor AM2 Athlon 64×2 6000+ 3.0 GHz

Memory 4 GB, 800 MHz DDR2

Motherboard ASUS M2N-SLI Deluxe

Graphics card Leadtek 8800 GTX

Power supply 650 W

TABLE II

DEVICE SPECIFICATION (GPU)

Model NVIDIA 8800 GTX

# of Multi-processors 16

# of cores per Multi-processor 8

Memory 768 MB

Shared memory per block 16 KB

Max # of threads per block 512

Warp size 32
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